Fluorimetric Nerve Gas Sensing Based on Pyrene Imines Incorporated into Films and Sub-Micrometer Fibers

By Jeremy M. Rathfon, Zoha M. AL-Badri, Raja Shunmugam, Scott M. Berry, Santosh Pabba, Robert S. Keynton, Robert W. Cohn, and Gregory N. Tew*

1. Introduction

Organophosphates are toxic compounds found in chemical-warfare agents, such as Sarin and Soman, as well as pesticides. Highly active, volatile chemical-warfare nerve agents cause rapid and severe inhibition of serine proteases, most markedly acetylcholinesterase, which is vital to nerve function. This inhibition is often fatal. Nerve agents were used in the 1995 terrorist attack in a Tokyo subway [1] and on Kurdish communities in Iraq [2]. The ease of manufacturing and dispensability, as well as available, inexpensive starting materials make these agents a weapon of choice for criminal terrorist attacks. Thus, the rapid sensing of these nerve agents has become an increasingly important research goal, especially aimed towards practical “in the field” devices. Concerns for national security as well as large stockpiles of aging and currently leaking weapons containing nerve agents in the United States make the problem of nerve agent sensing even more imperative [3].

There have been a number of approaches for the detection of chemical-warfare agents including colorimetric [4–6] fluorimetric [7–12] photoacoustic spectroscopy [13] gas chromatography-mass spectrometry [14] enzymatic assays [15] and molecular imprinting coupled with lanthanide luminescence and fiber optics [16]. Although all of these methods have advantages and disadvantages, no gold standard has emerged and many approaches are either complex, non-sensitive, non-selective, or do not sense in real time. Continued improvements in the detection of warfare agents are critical. Key attributes of a practical sensing system are sensitivity, selectivity, timely detection, and portability along with operational simplicity. An extremely facile method of chemical sensing is the creation of an optical event, such as a color change or fluorescence, upon exposure to an analyte, referred to as “turn on” sensors [5–7, 9, 12, 17, 18]. The very high sensitivities of fluorescence based sensing molecules make this mode of detection particularly attractive [7, 18].

This report shows the fluorimetric detection of nerve agent surrogates in both solution and functional micrometer and sub-micrometer fibers (Fig. 1). The pyrene imine molecules (Fig. 2) used for sensing are weakly luminescent in the UV region, but upon exposure to a nerve agent mimic the molecules fluoresce strongly in the visible spectrum. The sensing scheme is simple and robust, being able to detect nerve agent mimics in the vapor phase from a solid support. The sensitivity and selectivity of the pyrene imine and how these properties change in the solution and bulk polymer films as well as fibers are discussed.

Recent studies have shown the use of nanofibers and other nanobjects as useful architectures for many applications such as tissue engineering, photonics, catalysis, electronics, optics, scaffolds for microfluidics [19–22] and, most pertinently, sensing [22–25]. There are a few accessible techniques to manufacture polymer nanofibers including electrospinning [26]. Recently, Cohn and associates produced multiple oriented, suspended polymer nanofibers in parallel via a facile direct drawing approach [20, 27]. The creation of fibers increases detection surface area and thus
could lead to an increase in response time and sensitivity. In addition to increased sensitivity, fibers can also be incorporated into devices for sensing applications. This report will discuss the sensitivity and selectivity of polymer fibers created both by electrospinning and the direct drawing approach.

Because of the health hazards involved with nerve agents, surrogates are commonly used and were chosen for the detection experiments reported here: diethyl chlorophosphate, chloro-Sarin surrogate (SAS-Cl), was chosen as a structural and functional mimic for the nerve agent Sarin, likewise pinacolyl methylphosphonate, Soman surrogate (SOS), was used as a mimic for Soman (Fig. 3). Also shown in Figure 3 are various organophosphates and acetyl chloride (AcCl) which were chosen to test the selectivity of 1 for nerve agents versus compounds with similar structure and functionality.

2. Results and Discussion

The norbornene pyrene imine monomer (1) was synthesized in the pursuit of creating polymeric based sensors. Monomer 1 was subjected to ring-opening metathesis polymerization (ROMP) yielding a homopolymer of densely packed pyrene functionalities, with the idea of using these polymers to directly draw fibers. However, these polymers exhibited the well-known excimer emission common to pyrene, so they only served as “turn-off” indicators in the presence of SAS-Cl. The “turn off” event is a decrease in intensity of emission and is more difficult to measure or see optically than the creation of a unique optical event. Further complicating the matter, the homopolymer of 1 has issues with solubility in many solvents. In order to create drawn fibers from polymers of molecular weight around 100 kDa, solutions at a minimum of 15 wt % need to be used to prevent fiber breakup. The homopolymer is only minimally soluble (less than 1 wt %) in suitable, high vapor pressure drawing solvents such as toluene, chlorobenzene, and CHCl3. To circumvent these difficulties we considered the direct use of monomer 1 itself. This structure proved to be a valuable “turn on” sensor as presented below.

2.1. Solution Properties of 1 and 2

Due to these complications with the homopolymer, the solution and bulk properties of the small molecule 1 were studied. This monomer was found to have much better sensing properties and capabilities with the creation of a unique “turn on” optical event, rather than the difficulties involved with a “turn off” sensing probe where a small decrease in a large signal must be detected. In addition, 1 can also be easily incorporated into polymer solutions for the purpose of drawing micrometer and submicrometer fibers. Studying the solution and bulk properties of 1 gave more insight on its sensing properties, and allows for the incorporation of 1 into future polymer compositions and architectures. To be sure the pyrene imine was essential for fluorimetric detection of nerve agents a model compound (2),...
containing an alkyl group in place of the norbornene functionality, was also investigated.

The sensitivity and selectivity of both the norbornene pyrene imine (1) and the alkyl pyrene imine (2) were determined. Solutions were made of 1×10^{-4} wt % 1 and 2 in toluene. Fluorescence (FL) (Fig. 4) and UV-Vis (Fig. S1, Supporting Information) spectra were taken of both before and after exposure to a large excess (20 μL) of SAS-Cl. The FL and UV-Vis spectra of 1 and 2 are essentially identical. This equality in the spectra of 1 and 2 shows that the norbornene functionality has no effect on the optical properties of the pyrene imine group. Upon exposure to SAS-Cl, a red shift is seen in both the absorption and emission of the pyrene imine compounds. Most importantly, the emission of 1 shifts from a characteristic non-visible, UV pyrene emission to an intense visible green emission at approximately 490 nm instantaneously, allowing for the timely detection of SAS-Cl via a fluorimetric route.

NMR experiments were performed in order to further understand the interaction of SAS-Cl with the pyrene imine compounds. It is proposed that the interaction involves a primary nucleophilic attack of the imine nitrogen on the SAS-Cl phosphorous, followed by rearrangement to form a carbon-phosphorous bond at the imine group carbon. This proposed reaction is supported in other reports. Monitoring this reaction with 1H NMR, a decrease in the imine proton peak intensity (8.44 ppm) is seen which corresponds to the loss of this proton during the reaction. Expected shifts of the β-pyryene proton (8.89 ppm) as well as the proton adjacent to the imine (methylene in 1, 4.01 ppm, and methyne proton in 2, 3.12 ppm) confirm the phosphorylation of the imine. The corresponding 1H NMR spectrum of the reacted pyrene imine is given in the Supporting Information (Fig. S14). The resultant phosphorylated imine bond is conjugated with the pyrene ring resulting in the observed red-shift in the fluorescence.

To further investigate the importance of the imine in the reaction with SAS-Cl, the UV-vis and FL spectra of 1-pyrene carboxaldehyde, the aldehyde precursor to 1, were also taken before and after exposure to SAS-Cl (Fig. S2). The spectra of the 1-pyrene carboxaldehyde upon exposure to SAS-Cl, shows no observed decrease in the characteristic pyrene peaks and no green emission in the 490 nm range as observed with the reaction of SAS-Cl and 1. This lack of detection on the part of 1-pyrene carboxaldehyde shows that the reactive imine of 1 is crucial in the detection of SAS-Cl.

The sensitivity of 1 in solution was determined by adding specific amounts of SAS-Cl and measuring the subsequent emission (Fig. 5). The green emission at approximately 490 nm can be detected both by the naked eye under a handheld UV lamp and through FL at an exposure of 40 parts per million volume (ppmv) SAS-Cl in both toluene and CHCl$_3$ and are similar to the toluene spectra in Figure 4.

The sensitivity of 1 in solution was determined by adding specific amounts of SAS-Cl and measuring the subsequent emission (Fig. 5). The green emission at approximately 490 nm can be detected both by the naked eye under a handheld UV lamp and through FL at an exposure of 40 parts per million volume (ppmv) SAS-Cl in both toluene and CHCl$_3$ and are similar to the toluene spectra in Figure 4.

The sensitivity of 1 in solution was determined by adding specific amounts of SAS-Cl and measuring the subsequent emission (Fig. 5). The green emission at approximately 490 nm can be detected both by the naked eye under a handheld UV lamp and through FL at an exposure of 40 parts per million volume (ppmv) SAS-Cl in both toluene and CHCl$_3$ and are similar to the toluene spectra in Figure 4.

The sensitivity of 1 in solution was determined by adding specific amounts of SAS-Cl and measuring the subsequent emission (Fig. 5). The green emission at approximately 490 nm can be detected both by the naked eye under a handheld UV lamp and through FL at an exposure of 40 parts per million volume (ppmv) SAS-Cl in both toluene and CHCl$_3$ and are similar to the toluene spectra in Figure 4.

In order to investigate the detection of nerve agents in the solid state and eventually in polymeric fibers, films were created of 1 dispersed in PS. The films and fibers were cast from a 15 wt % solution of PS in toluene containing 0.1 wt % SAS-Cl. The sensitivity of 2, however due to its lower molecular weight, had a slightly higher mole percent in solution, thus was slightly more sensitive at the same concentration (0.1 wt %).

2.2. Bulk PS Film Properties

In order to investigate the detection of nerve agents in the solid state and eventually in polymeric fibers, films were created of 1 dispersed in PS. The films and fibers were cast from a 15 wt % solution of PS in toluene containing 0.1 wt % SAS-Cl. The sensitivity of 2, however due to its lower molecular weight, had a slightly higher mole percent in solution, thus was slightly more sensitive at the same concentration (0.1 wt %).

The solution sensitivity of 1 may have been affected by the equilibrium between the imine functionality and the corresponding hydrolyzed amine and pyrene aldehyde products. In the solid
form 1 is stable, having a shelf life of at least one year, as checked by NMR; however, the equilibrium of 1 with the hydrolyzed amine could be more pronounced in dilute solutions. This hydrolyzed amine would react with SAS-Cl to effectively lower the threshold sensitivity of 1; amine would react with SAS-Cl, requiring more SAS-Cl to be added to the solution in order to detect the green emission, therefore the sensitivity of 1 in solution would be decreased. Previous work, illustrated by Stern-Volmer constants, showed that diethyl fluorophosphate (fluoro-Sarin surrogate (SAS-F)) was much more reactive than SAS-Cl suggesting that the activity of the organophosphate directly affects the sensitivity of the sensor, thus 1 would be more sensitive to SAS-F versus SAS-Cl.\(^{[11]}\) In turn, 1 would be even more sensitive to Sarin itself.

Fluorescence optical microscopy (FOM) of cross-sections of exposed PS films were taken. Interestingly, at lower exposures (less than 20 ppmv SAS-Cl), emission only occurs at the film surface, indicating that the emission of 1 when reacted to SAS-Cl is diffusion dependent (Fig. S5). Sensitivity could be increased if the increased reactivity of SAS-Cl is significant and why no response was observed upon addition of SOS. The selectivity of 1 in solution was similar to the selectivity in the bulk PS films.

2.3. Fibers: Properties and Applications

Micromter and sub-micrometer fibers were manufactured using two approaches, direct drawing and electrospinning. As stated earlier, micrometer and nanofibers have great potential for applications in devices for tissue engineering, photonics, catalysis, and sensing. Functional fibers can be electrospun into mesh mats, able to be placed in solutions or airstreams, for applications in sensing systems.\(^{[24,25]}\) Suspended, ordered fibers could be incorporated into optical devices for use in electronics, photonics, optics, and sensors\(^{[19,20,23]}\) or as scaffolds for microfluidic devices.\(^{[26]}\) In addition, fibers have increased surface area and thus have increased exposure to the sensing environment. If sensing in the solid is diffusion limited, smaller objects with increased surface area may prove to be more sensitive.\(^{[25,28]}\)

Suspended, ordered micrometer and sub-micrometer fibers were manufactured by a direct and facile approach developed by Cohn and associates.\(^{[20,27]}\) As Cohn, McKinley, and coworkers have shown, the drawn fiber diameter can be tailored by the modulation of solution properties including viscosity and surface tension, which are changed by varying the solution concentration and the MW of the polymer.\(^{[30,32]}\) In this report, drawn fibers were created from a toluene solution of 15 wt % PS (\(M_n = 400\, \text{kDa}\)), containing 0.1 wt % 1, to form fibers with various diameters from less than 1 \(\mu\)m to approximately 40 \(\mu\)m (Fig. 8). These unexposed fibers (Fig. 8A) were then exposed to SAS-Cl vapor to measure their sensitivity. The green emission of 1 could be easily detected at 2.5 ppmv exposure to SAS-Cl by FOM (Fig. 8B and C) and at 5 ppmv by the naked eye under a handheld UV lamp. The “turn on” optical detection event is easily seen in the difference between the unexposed fibers in Figure 8A and the same fibers exposed to SAS-Cl in Figure 8B.

Electrospin fibers were created by spinning a DMF solution of 20 wt % PS (\(M_n = 400\, \text{kDa}\)) solution, with 0.13 wt % 1, flowing at 0.01 mL min\(^{-1}\) across a distance of 12 cm with...
an applied voltage of 16 kV. This concentration of PS and 1 maintains the same composition of PS to 1 in the dried electrospun fibers, as used previously in the PS films and direct drawn, oriented fibers. The resultant fibers formed a mat and have an average diameter of approximately 360 nm with no observed beading (Fig. 9A). As shown in the literature, electrospun polystyrene fiber diameter and morphology can be tuned by molecular weight of the polymer and concentration of the solution (Fig. S6).\(^{26}\) The sensitivity of the electrospun fibers was examined and the green emission of 1 was detected at 10 ppmv exposure to SAS-Cl as measured by FL (Fig. S7) and 5 ppmv by both FOM (Fig. 9B) and the naked eye under a handheld UV lamp. The high density of fluorescent fibers in the electrospun mat account for the bright green background in the FOM picture of Figure 9B. The slight decrease in sensitivity of the electrospun fibers as compared to the solid and suspended, oriented fibers could have occurred due to slight solvation of the smaller electrospun fibers by the acetone used as a diluent for SAS-Cl.

3. Conclusions
A novel approach for the fluorimetric sensing of nerve agents has been presented. The approach is facile, timely, and easy to interpret via the change from no response to a green emission. The sensitivity of the sensing molecule in solution versus PS films and micrometer and sub-micrometer fibers was found to be 40 and 5 ppmv, respectively. This increase in sensitivity in the solid and fiber states can be attributed to increased local concentration of sensing species in the solid as well as increased surface area and thus exposure to the sensing molecules. The pyrene imine based sensing molecule was found to be selective towards a Sarin surrogate versus other organophosphates, acid chloride, a hydroxyl Soman surrogate (SOS), and less reactive halogenated phosphates. This sensing scheme has the potential to be incorporated into a functional fluorimetric device. The application of this detection into functional micrometer and nanofibers will allow it to be utilized with optical devices and photonics as well as solution and airborne sensing devices.

4. Experimental

Materials: All chemical reagents were purchased from Aldrich, Alfa Aesar, Fisher, Cambridge Isotopes Aldrich, VWR, or Acros Organics and used without further purification unless otherwise stated. Polystyrene (PS) standards of number average molecular weight (M\(_n\)) of 400 kDa and polydispersity index (PDI) of 1.06 were purchased from VWR and used for all films and fibers.

\[\text{Di-tert-butyl dicarbonate (16.0 g, 73.3 mmol)} \]

was added to a solution of ethanol amine (3.96 mL, 66.6 mmol) in dioxane (400 mL) and allowed to stir at room temperature for overnight. The solvent was then removed under reduced pressure and the crude product was redissolved in dichloromethane (200 mL), and once with water (200 mL). The final solution was treated with MgSO\(_4\) and the solvent was removed under reduced pressure to afford the (2-hydroxy-ethyl)-carbamic acid tert-butyl ester (4.00 g, 24.8 mmol). Tetrahydrofuran (200 mL) was then added to the flask to dissolve the mixture. The flask was immersed in an ice bath upon which diisopropyl azodicarboxylate (4.8 mL, 24.8 mmol) was added drop-wise. The ice bath was then removed and the reaction mixture was allowed to stir at room temperature for 12 h. The solvent was later removed under reduced pressure. The pure product, [2-(3,5-dioxo-10-oxa-4-aza-tricyclo[5.2.1.0\(\text{2,6}\)]dec-8-en-4-yl)-ethyl]-carbamic Acid tert-butyl Ester, was isolated by crystallization from anhydrous diethyl ether (10.5 g) as colorless oil. The 1HNMR (300 MHz) and 13CNMRSpectra were obtained using a Bruker DFX-300MHz NMR spectrometer. T3C NMR (75 MHz) spectra were obtained using a Bruker DPX-300MHz NMR spectrometer. The 1HNMR (300 MHz, CDCl\(_3\), \(\delta\)) 6.48 (s, 2H), 5.22 (s, 2H), 4.80

Figure 8. Optical microscopy of PS fibers containing I (from a solution of 15 wt % PS and 0.1 wt % I in toluene) in bright field illumination with no exposure (A) and in fluorescence after exposure to SAS-Cl (B). FOM of fibers with an average diameter of 4.9 \(\mu\)m after exposure to SAS-Cl (C).

Figure 9. Electrospun PS fibers containing I (from a solution of 20 wt % PS and 0.13 wt % I in DMF) imaged by SEM (A) and FOM after exposure to SAS-Cl (B).
Fibers were spun using a flow rate of 0.01 mL/min with applied voltages of 12, 16, and 20 kV. Fibers were drawn using two solutions, 15 wt % PS and 0.1 wt % 1 as well as 20 wt % PS and 0.13 wt % 1 dissolved in N,N-dimethyldimamidoc (DMF). Surface morphology, diameter, and fiber morphology (bedding) were checked via scanning electron microscopy (SEM).

Microscopy: All optical microscopy images were taken using an Olympus BX51 upright microscope equipped with a HBO-100 Hg lamp. Fluorescence optical microscopy (FOM) images were taken using a laser excitation filter and a Laser emission filter. SEM was performed on a JEOL 6320 FXV Field Emission SEM with JEOL Orion software.

Acknowledgements

The authors thank the Presidential Early Career Awards for Scientists and Engineers (PECASE), the Army Research Office for the Young Investigator Award, and the National Science Foundation’s Nanoscale Interdisciplinary Research Team (NSF NIRT, Grant 0506941) for their generous support of this work. The authors thank Scott D. Cambron from the University of Louisville for fabricating the glass pillar arrays and Dr. SungCheal Moon from the University of Massachusetts, Amherst for help with electrosprinning. Supporting Information is available online from Wiley InterScience or from the author.

Received: July 8, 2008
Revised: November 10, 2008
Published online:

